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Abstract  

By clarifying the concepts of strong and weak gravity in a scalar-scalar-tensor theory of 
gravitation, we have studied an action principle from which we have discussed several 
theories of weak and (separately) strong gravity. By further appealing to the general 
piinciple of gauge invariance we are able to discuss gauge theories of spontaneously 
broken discrete symmetries. Finally, we find that super-heavy gauge bosons are auto- 
matically excluded when both gravities are properly understood. 

1. In troduct ion 

Following the initial success o f  exploiting the gauge principle for the con- 
struction o f  unified theories of  electromagnetic and weak interactions (Salam, 
1968; Weinberg, 1967), the possibili ty arises o f  bringing in the further natural 
forces, namely, the strong, CP violating ( if  different from the weak force) 
and, finally, the  gravitational interactions. On the other  hand, in recent years 
an a t tempt  has been made to unify the  strong and gravitational interactions: 
this pair o f  forces was studied in the context  o f  a gravitational field coupled, 
in Riemannian space, to a second tensor field (strong gravity), in analogy with 
vector meson dominance (Zumino,  1970; Isham et  al., 1971 ; Aichelburg, 
1973). An asymptot ic  solution was found for the f-field assuming spherical 
symmetry  (Aragone & Chela-Flores, 1972); recently, this solution was used 
for evaluating the exact energy content  inside a sphere enclosing a point  
mass (Chela-Flores, 1974) but,  in spite o f  the fact that  good agreement was 
obtained with the result expected on the grounds o f  special relativity alone, 
we felt induced to s tudy a simpler model  where exact spherically symmetric  
solutions were known. In other words, Einstein's field equations were adopted 
without  insisting that  the classical Newtonion limit be valid (Chela-Flores & 
Herrera, 1974) (henceforth we shall refer to this theory as C-H).  

Although very suggestive as a semi-classical framework in which to de- 
scribe highly dense hadronic matter ,  in the C-H model  one does not  sufficiently 
use the full power o f  field theory,  even before some o f  the underlying quantum 
gravity problems are considered. 
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We shall extend our earlier considerations to a full theory of gravitation 
with Weyl-type gauge symmetries (Zumino, 1970). Then, by appealing to the 
principle of gauge invariance (Weyl, 1950), gauge fields mediating fundamental 
forces will be introduced; in this way, we are able to go beyond the C-H 
model. In doing so, we obtain a better understanding of a recent theory of 
Freund (1974). 

The plan of this work is as follows: 
In Section 2 we generalise the scalar-tensor theory (Brans & Dicke, 1961) 

to a scalar-scalar-tensor theory in which, as we proceed to show in Section 3, 
the Newtonian and Yukawa limits of the full theory set the difference between 
the two scalar fields. 

Then, in Section 4, we consider some special cases of the theory and re- 
cover the theory of general relativity (Einstein, 1916), the Brans-Dicke as 
well as the C-H theory. 

Extensions to gauge theories of fundamental forces are considered in 
Section 5. Particular attention is given to the recent work of Freund, showing 
from our point of view that we may infer directly the correct order of 
magnitude for the spontaneously broken C-violation in electromagnetism, as 
well as CP violation. We end the discussion of this section by explaining how 
we naturally avoid the super-heavy vector bosons, which have appeared in 
the unified theory of strong, electromagnetic and weak interactions studied 
by Georgi et al. (1974). 

Finally, a brief summary is given in Section 6. 

2. Unified Theory of Strong and Weak Gravity 

In order to generalise Einstein's theory of gravitation, we may start with 
the corresponding action principle from which the Euler-Langrange equations 
of motion are obtained (Landau & Lifshitz, 1951), 

0 = 6 I d 4 x ~ / - g [ R  + 167rc --T-GNL] 

where R is the Riemann scalar and L is the Lagrangian density of matter 
(including all fields besides gravitation); GN is the Newtonian coupling 
constant. 

We begin by dividing the Lagrangian density by GN and assume that the 
Maehian relation between geometry and matter applies beyond gravitational 
forces. 

Then, with Brans and Dicke, we replace GN by a scalar, but choose to 
write ~b 2 instead of ~b as in the original scalar-tensor theory. 

In view of the fact that in the unified theory of strong and weak gravity, 
the strong (i.e. nuclear) potential and the weak (i.e. Newtonian) potential will 
be competing in the relevant long-range and short-range limits, we study a 
correspondence principle: 

In problems typical of microphysics, the short-range (Yukawa) potential 
will dominate the long-range (Newtonian) potential and vice versa, in problems 
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typical of macrophysics, the long-range potentials will be dominant. 
Hence, we find it is sufficient to study an asymptotic expansion for the 

gravitational coupling 

~b 2 = ~2 e + X 2 + . . .  (2.1) 

and we let the physics of the problem identify the leading terms of  this 
expansion (by means of a perturbative treatment). 

In order to construct a Lagrangian theory, we consider the functions ~2 
and X as field variables which couple with the metric tensor guy in such a 
way that the action principle satisfies the Weyl invariance (Zumino, 1970), 

f2 -+ ~ = a exp(-A) (2.2a) 

X -+ X = X exp(-A) (2.2b) 

&w -+ guy = guy exp(2A) (2.2c) 

We are, therefore, led to the simplest generalisation of Einstein's theory 
embodied in the action principle 

0 = 8 I ({(g22 + X2)R + 167rL/e4 - c°3uf23gUU - ~3"X3uX~v}" ~/(-g) d4x 
(2.3) 

It cannot be over-emphasised, at this stage, that the inclusion in a full dynamical 
theory of coupling strengths that yield results correct only to first order, has 
an important precedent in the theory of f3.decay and other weak processes by 
Fermi (1934), the well-known (V-A) theory. 

We notice that in spite of the fact that f2 and × enter symmetrically in the 
Lagrangian density, they have different dimensionless coupling strengths co 
and ~. In the pure Brans-Dicke theory (X -+ 0, ~ ~ 0) it is possible, from con- 
siderations in celestial mechanics, to set a limit on permissible values of co; 
for example, in the calculation of  the perihelion rotation of a planetary orbit, 
the observational data requires (Brans & Dicke, 1961) co t> 6. Similar require- 
ments can be put on ~ from microphysics. 

In the following section we shall see that the correspondence principle 
leads to different functional behaviour for the "scalars, and that the Yukawa 
behaviour of  X leads us to consider this function as the strong gravity scalar 
field. Similarly, the Newtonian functional behaviour for the ~2 field leads to 
the consideration of this field as the weak gravity scalar. 

3. The Classical Limits o f  the Unified Theory 

In view of the enormous difference in coupling strengths between strong 
and weak gravity (nearly forty orders of magnitude!), it is physically meaning- 
ful to discuss strong and weak gravities separately as a first-order approxima- 
tion. Then, once the leading order functions g2 and × in the asymptotic 
expansion of the coupling strength q~ of gravity have been determined, we 
can proceed to study the implications of the full theory. 
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3.1. The ~ -+ O, X -~ 0 Limit  (Scalar-Tensor Theory o f  Weak Gravity) 

In general relativity the equation of motion of a point particle without 
spin, moving in a weak gravitational field, may be obtained from a variational 
principle, 

0 = 8 I m(guvUUUV)l/z ds 

namely, one obtains the geodesic equation 

d 
~-s (mUu) - ½m~ugvaUaU v = 0 (3.1.1) 

In this weak gravity field, we have (Brans & Dicke, 1961) 

m = mof (x  ) (3.1.2) 

so that equation (3.1.1) is modified to 

d 
ds (mUu) - ½mbuguaUaUU - bum = 0 (3.1.3) 

We notice that equation (3.1.3) does not coincide with the standard equation 
for a geodesic of the geometry. However, the effect of a Weyl transformation 

guy -+ g,v = f 2guu, f = exp(A) 

is given by 

1 Uu ds  2 = f2ds  ~,u = 7  

Hence equation (3.1.3) becomes 

d 
- -  - ~moa,,gw, U U 0 (3.1.4) d s  ( m o U . )  ' - - " - "  = 

and the particle moves on a geodesic of the rescaled geometry. Now, the 
field is weak in the sense that if we write 

ffuv = g-'(~uv) +Tuv, g~) =dg ( 1 , - 1 , - 1 , - 1 )  (3.1.5) 

and if the potentials 7uv are dominated (except near the origin) by 7uu as com- 
pared with higher powers, then we say the field is weak. We may further 
assume that the point particle is moving slowly, in such cases we may approx- 
imate equation (3.1.4) as 

d 2 c 2 
dt-- 5 x = - -~ bx 700 (3.1.6) 

Then, provided we identify (c2/2) ~oa with the classical r -1 potential, we 
recover in equation (3.1.5) the Newtonian limit of  weak gravity. 
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3.2. The w -+ O, ~2 ~ 0 Limit  (Theory o f  Strong Gravity) 

We first remark that equation (3.1.6) provides a self-consistent test for 
our approximation, since the classical limit provides a potential which fulfills 
the requirement that the 7vv's dominate the deviations of  the Minkowskian 
metric to first order. We should point out that no mention is made of the 
numerical magnitude of the coupling constant, since what we are after is the 
asymptotic behaviour of the scalar functions. 

In the strong gravity limit, we also consider a point particle moving slowly 
along a geodesic of the rescaled geometry. 

In writing the geodesic equations under the assumption (3.1.5) we con- 
sider the perturbations hoo of  the flat metric ~,~), 

g'uv =g-(u~ + huu (3.2.1) 

to be due entirely to the gauge function A, hence identifying the gauge 
function with the only scalar function, namely, the strong gravity scalar. It 
should be observed that such identification was precisely Dicke's viewpoint 
(in weak gravity) in his later work on Mach's principle and invariance under 
transformation of units (Dicke, 1962). 

We are therefore led, as in the weak gravity limit, to the classical equation 
satisfied by the perturbation hoo (cf. equation (3.2.1) of the Minkowski 
metric entirely due to the strong gravity scalar field 

d 2 c 2 
5t  x = - T  xhoo 

Hence, if V represents the classical potential corresponding to strong gravity 
(Yukawa's potential), we find 

goo = 1 + 2 V/c  2 

or, equivalently 

~'oo --- exp(2A)goo = 1 + 2V/c 2 (3.2.2) 

In view of the fact that the main assumption of strong gravity is that in the 
classical limit 

goo = 1 

we find the gauge function to be given by 

A = VIe 2 = exp(-lar)/c2r 

where/~ is the nuclear range. 
Therefore, in the strong gravity limit, we make the Dicke-type identification 

of the Weyt gauge function A with the strong gravity scalar X (which is indeed 
interpreted as a potential from equation (3.2.2)). 

Finally, to conclude this section we may return to the asymptotic 
expansion (2.1) to find 

q5 2 = f2 2 + X 2 (3.2.3) 
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where the field functions are given by 

g22 = A/r 

x 2 = B e x p ( - ; ) / r  

(3.2.4) 

0.2.4) 

4. Physical lmplications of  the Unified Theory 

(a) The Einstein Theory. A special case of the ~ -+ 0 limit is of interest 
here, namely, if we further approximate f22 by the constant GN 1 we are 
led to the Einstein field equations. 

(b) The Brans-Dicke Theory. This theory is recovered in the ~ ~ 0 limit, 
while retaining a variable ~22. 

(c) The C-H Theory. In the co -+ 0 limit we may approximate X 2 by the 
constant Gs~ and recover the C-H model (of. appendix A). 

If the full equations for the metric are written (explicitly), we find 

( g22 + x2)Guv = Tuv + Suv(g2, X) (4.1) 

For short-range forces 

X 2 >> f~2 (numerically) (4.2) 

thus the strong gravity scalar X dominates the physics at the microscopic 
level. 

At the same time, the same field equation (4. I) serves in the discussion of 
ordinary gravitational problems (planetary physics, cosmology, but not 
cosmogony), for such problems are clearly of long-range order, hence 

~2 >> X 2 

since the Yukawa potential cuts off around one fermi. 

5. Extension Into Gauge Theories of  Fundamental Forces 

5.1. The Freund Theory 
By gauging the Weyl invariance of our Lagrangian density in the long-range 

limit, one is clearly led to a non-linear set of coupled equations for A u inter- 
preted as the photon field, the guy and the single scalar (essentially our) f2. 

Spontaneous breakdown of gauge invariance (the Higgs-Kibble mechanism 
(Kibble, 1967; Higgs, 1964)) led Freund (1974) to a violation of C-invariance 
since the crossed terms in the piece 

~L~'= (~u - eAu) ~ (~v - eAr) ~g~V (5.1.1) 

of the total Lagrangian violate C-symmetry (Ag is odd under C-exchanges, 
Au__e _ Au). Hence the presence of the terms eA#~3v~g uv produces the 
(spontaneously broken) discrete symmetry violation, C as welt as CP. 
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The effect, however, is far too small_to account for the observed Fitch- 
Cronin CP violating effect in KI -+ zr°rr ° (Christensen et al., 1964). However, 
Freund remarks that if one replaces weak gravity by strong gravity, the correct 
order of  magnitude is obtained. 

From the point of view of our theory, after gauging Weyl invariance and 
spontaneously breaking the symmetry of the (quantised) theory, we are led 
through the Higgs-Kibble mechanism to a massive photon field, indicating 
that the long-range limit is no longer suitable, instead we have 

X 2 > ~'2 2 

Thereby providing us with an understanding of  the replacement of weak 
gravity by strong gravity, which was done phenomenologically by Freund, 
as well as by ourselves in the C-H model (Chela-Flores & Herrera, 1974). 

5.2. An Interesting Numerical Coincidence 

In a recent paper of Georgi, Quinn & Weinberg (1974), renormalisation 
effects are studied which make strong interactions strong, in gauge theories 
of strong, electromagnetic and weak interactions. The above-mentioned 
authors are led to super-heaw gauge bosons arising in the spontaneous 
breakdown of symmetries in observed interactions. (We refer to such bosons 
as the Z-particles.) They find 

mz = 1018±1GeV (5.2.1) 

Although the improved gauge theory of electromagnetic and gravitational 
interactions does not include weak interactions, we observe that if we had 
(erroneously) taken the long-range limit 

X<gZ 

in a theory which is clearly of short-range nature, we would have found 

m Z = ~ ~- 1019 GeV (5.2.1) 

(cE Appendix B), which is clearly prevented by taking the correct short-range 
limit. 

6. Conclusions 

We have learnt that gauging the scalar-scalar-tensor theory may be a useful 
way to probe at a deeper level the role played by gravitational forces in 
elementary processes. The semi-classical results of the C-H model are seen 
in a different light within the context of the two gravities and, particularly, 
the improved unified theory of electromagnetism and gravitation gains in 
simplicity and inner consistency. 

Acknowledgments 

The author would like to thank Professor Abdus Salam, the International Atomic 
Energy Agency and UNESCO for hospitality at the International Centre for Theoretical 
Physics, Trieste. I would also like to thank Dr. A. R. Prasanna for kindly pointing out a 
misprint in the original manuscript. An Associateship at the ICTP is also gratefully 
acknowledged. 



24 J. CHELA-FLO RES 

Appendix A 

Point (c) of Section 4 needs some clarification since, in the C-H theory, 
both the cosmological constant and the strong gravity coupling strength were 
rescaled. 

The relevant observation here is that the bounds on highly dense matter 
(hadronic matter) were obtained for a completely degenerate relativistic gas 
of fermions; so, in order to understand properly the coupling of  fermions to 
curved space, we must extend Einstein's equations (without a cosmological 
constant) to include torsion as explained, for instance, by Trautman (1973). 

Recently, however, Prasanna (1973) has solved explicitly the Einstein- 
Cartan field equations and found that the assumption of a spherically sym- 
metric distribution of spin-1/2 particles puts a natural restriction on the 
spins of the particles, namely that they all have only the radial component 
different from zero. The density of spins appears in the field equations (cf. 
Prasanna's equations (4.10)) as a term which we observe to be equivalent 
to a 'cosmological' constant; the constant, in fact, appears as being due to 
the total spin conservation. It is, further, of the right magnitude since the 
density of spin constant is proportional to the gravitational scalar coupling 
which in the C-H theory is microscopic (× >> ~2). 

Appendix B 

Following Freund (1974), when we gauge the Weyl symmetry, we must 
consistently replace derivatives by covariant derivatives. In particular the 
Riemann scalar must change accordingly, 

R =R[3ugux~ Vugux], Vu: covariant derivative (B.I) 

More explicitly, the affine connections transform as 

puvx _+ ruvx = ½gUO [(3x + 2eAx)gov + (Or + 2eAv)gxo - (~o + 2eAo)gvx] 

Hence, in terms of the old Riemann scalar, we have the transformation law, 

K = R + 6eOuA u + 6e~Av Au + 6eAUFu~¢ (B.2) 

We notice from the way ¢2 and R are coupled, that once there is spontaneous 
breakdown of symmetry the scale of the mass of the massive gauge boson 
will be determined by X in the short-range limit and, therefore, the mass of 
the gauge field will be of the order of the proton mass and not of  the super- 
heavy type found in Georgi et al. (1974). 

Finally, we notice that the crossed term eAuePOv¢g uv of the total Lagrangian 
density in equation (5.1.1) will also contribute to the total mass, but this 
does not change the conclusions. 
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